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I. Introduction 
Fluid structure interaction (FSI) is a multi-

physics phenomenon which occurs in a system where 

flow of a fluid causes a solid structure to deform 

which, in turn, changes the boundary condition of a 

fluid system. This can also happen the other way 

around where the structure makes the fluid flow 

properties to change. This kind of interaction occurs 

in many natural phenomena and man-made 

engineering systems. It becomes a crucial 

consideration in the design and analysis of various 

engineering systems. For instance, FSI simulations 

are conducted to avoid flutter on aircraft and turbo-

machines [1], to evaluate the environmental loads 

and dynamic response of offshore structures [2] and 

in many bio medical applications. 

In a typical single-field mechanics problem, such 

as a fluid-only or structure-only problem, one begins 

with a set of governing differential equations in the 

problem domain and a set of boundary conditions on 

the domain boundary. The domain may or may not be 

in motion. The situation is more complicated in an 

FSI problem. The sets of differential equations and 

boundary conditions associated with the fluid and 

structure domains must be satisfied simultaneously. 

The domains do not overlap, and the two systems are 

coupled at the fluid–structure interface, which 

requires a set of physically meaningful interface 

conditions. These coupling conditions are the 

compatibility of the kinematics and tractions at the 

fluid-structure interface. 

This paper aims the analysis of the fluid-

structure interaction of a three-dimensional wing of 

aircraft in airflow to determine its behavior. The fluid 

and structure were modeled independently and 

exchanged boundary information to obtain aero 

elastic solutions. The fluid was modeled using both 

two different discretization methods used as 

computational fluid dynamics (CFD) solvers based 

on the finite volume method and finite element 

method, the structure was modeled using finite 

element approximations and the two disciplines were 

coupled to solve aero elastic problems. The loads 

obtained from the pressure are applied to the original 

finite element model to obtain the displacements. The 

code ANSYS© is used as a pre-processing tool for 

creating the whole computational domain and volume 

mesh. The fluid’s flow is solved separately using two 

solvers: Ansys/Fluent© and Ansys/Flotran© and 

coupled with structural code.  

 

II. Fluid-structure interaction problem 
A general FSI problem consists to descript the 

fluid and solid fields, appropriate fluid structure 

interface conditions at the conjoined interface and 

conditions for the remaining boundaries, respectively. 

In this paper, we restrict ourselves to the 

incompressible flows, which is a reasonable choice 

for many engineering applications. 

In the following, the fields and interface 

conditions are introduced; furthermore, a brief sketch 

of the solution procedure for each of the fields is 

presented. 

 

2.1 Fluid’s equations 

All kinds of fluid flow and transport phenomena 

are governed by basic conservation principles such as 

conservation of mass, momentum and energy. All 

these conservation principles are solved according to 

the fluid model which gives set of partial differential 

equations, called the governing equations of the fluid. 

The following part elaborates on the theoretical 

background of CFD and the way it is employed for 

this particular case. 

The mass conservation principle states that the 

rate of increase of mass in a fluid element is equal to 

the net rate of flow of mass into a fluid element. 

Applying this physical principle to a fluid model 

results in a differential equation called continuity 

equation [4]. The continuity equation for a 

compressible fluid can be written as follows: 

( ) 0div u
t





 


 (1) 

 

where  represents the density and u represents the 

velocity of the fluid. The first term of the equation is 

the rate of change of density with respect to time and 

the next term is the flow of mass out of the element 

boundaries. 

Newton’s second law states that the rate of 

change of momentum of a fluid particle equals to the 

sum of the forces acting on a particle. The forces 
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acting on a body are a combination of both surface 

and body forces. When this law is applied for 

Newtonian fluid (viscous stress is proportional to the 

rates of deformation) resulting equations are called as 

Navier-Stokes equations. The equations written 

below explain the momentum conservation 

principle [4]: 

( )
( ) (  )i

i i Mx

u p
div u u div grad u S

t x


 

 
    

 
 (2) 

 

( )
( ) (  )

j

j j My

u p
div u u div grad u S

t y


 

 
    

 

 (3) 

 

( )
( ) (  )k

k k Mz

u p
div u u div grad u S

t z


 

 
    

 
 (4) 

 

where  represents the density, u represents the 

velocity vector, u
i
 , u

j
 , u

k
 are the velocity 

components in Cartesian coordinates system, µ is the 

dynamic viscosity and  S
M

  represents the 

momentum source term.  

 

2.2 Structure’s equations 

In structural mechanics problems, in general, the task 

is to determine deformations of solid bodies, which 

arise because of the action of various kinds of forces. 

From this, for instance, stresses in the body can be 

determined, which are of great importance for many 

applications. For the different material properties 

there exist a large number of material laws, which 

together with the balance equations lead to 

diversified complex equation systems for the 

determination of deformations (or displacements). 

The basic governing equation of motion is given as 

follows [10]:  

( )mu cu ku f t     (5) 

where m is a structural mass matrix, u  is an 

acceleration vector, c is a structural damping matrix,

u is a velocity vector, k is a structural stiffness 

matrix, u is a displacement vector, f  is a force 

vector which is a function of time, the structural 

damping is not involved in the finite element model 

so the above governing equation is modified into 

following form  

( )mu ku f t   (6) 

It is normal practice to use a numerical technique 

called finite element method (FEM) to find the 

solution for the equation (6), because it is not feasible 

to use analytical methods to determine the solution 

for a system with infinite number of degrees of 

freedom (DOFs). The basic principle behind this 

method to find an approximate solution to the 

differential equations is to divide the volume of a 

structure or system in to smaller (finite) elements 

such that infinite number of DOFs is converted to a 

finite value.  

 

2.3 Interface conditions 

The main conditions at the interface are the 

dynamic and kinematic coupling conditions. The 

force equilibrium requires the stress vectors to be 

equal as  

. .f s fsin n x     (7) 

 

We assume no mass flow across the 

consequently, also the normal velocities at interface 

the interface have to match as follows: 

. . fsid
u n n x

t


  


 (8) 

 

III. Numerical discretization 
In both discretization methods, the numerical 

computation is developed in two steps. In the first 

one, the conservation equations are formulated and 

an approach is adopted to evaluate all the terms. In 

the second one, a segregated, sequential solution 

algorithm is used to form the element matrices, to 

assemble them and to solve the resulting system for 

each variable separately [5]. In order to solve the 

governing equations of the fluid motion (2) (3) (4), 

their discretized form must first be generated. Thus, 

the first step is the generation of a grid, which 

consists to divide the solution domain into a finite 

number of control volumes or computational 

elements [14]. In the second step, each term of the 

partial differential equation describing the flow is 

written in such a manner that the computer can be 

programmed to calculate it [4]. 

The dynamics conservation equations of the 

generic variable in three dimensions that describe the 

transport phenomena for flows in free convection are 

of the general form:  

 

    2

2

i

i i

C v C
S

t x x

 

 

      
   

  
 (9) 

 

where  represents the common variable of interest as 

a concentration of the transported quantity in a non-

dimensional form,  is the density of the air, C  is 

the advection coefficient ( C  is the specific heat of 

air in the energy equation and the unit stands for the 

other conservation equations), iv  is the component 

of velocity vector in the direction i,   is the 
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diffusion coefficient and S  is the source term. 

These variables with their different terms are shown 

in [13] for a steady state (first term in Eq (9) is equal 

to zero) and incompressible flow. 

In order to solve the governing equations of the 

fluid motion [Eq (9)], their discretized form must first 

be generated. Thus, the first step is the generation of 

a grid, which consists todivide the solution domain 

into a finite number of control volumes or 

computational elements [14]. In the second step, each 

term of the partial differential equation [Eq (9)]  

describing the flow is written in such a manner that 

the computer can be programmed to calculate it [4]. 

 

3.1 Finite volume discretization 

The finite volume method is one of the 

numerical techniques applied in well established 

commercial CFD codes to solve the governing 

equations of the fluid. The basic and foremost step of 

CFD is dividing the computational domain (geometry 

of the region of interest) in to number of smaller 

regions called control volumes or cells and the 

collection of these cells is called a grid or a mesh, 

also, the calculated scalar values are stored at the 

center of the control volumes. Fluent uses the finite 

volume technique to convert the general transport 

equation into a system of algebraic equations and it 

uses different iterative methods to solve the algebraic 

equations. The following are the key steps in order to 

find the solution for the transport equation of a 

physical quantity [4]. The steps are as follows: 

• Division of geometry in to smaller regions 

(control volumes) using a computational mesh. 

• Integration of the governing equations of fluid 

over all the control volumes of the domain. 

• Discretization-conversion of the resulting 

integral equations in to a system of algebraic 

equations. 

• Finding a solution to the system of algebraic 

equations by an iterative method.  

The general form of transport equation in 

conservative form can be written as [4]: 

 

 
( ) ( )div u div grad S

t



 


   


 (10) 

where the variable  can be replaced by any scalar 

quantity,    is the diffusion coefficient. The left hand 

side of the equation contains the rate of change term 

and convective term, whereas the diffusive term and 

source term lie on the right hand side of the equation. 

Integrating over the control volume and applying the 

Gauss’s divergence theorem on the general transport 

equation gives [4].  

 ( )
CV A A CV

dV n u dA n grad dA S dV
t

  


   
    

 (11) 

 

3.2 Spatial and temporal discretization schemes 

The above transport equation is subjected to the 

stated key steps of the finite volume technique and 

the discretized equation for each control volume is 

obtained through suitable discretization schemes. 

There are many spatial discretization schemes for 

formulating diffusive and convective terms of the 

transport equation. 

In the case of diffusive term in the discretized 

equation, the gradients of a variable at the faces of 

the control volume are required. In order to find a 

value of this term, a central differencing scheme is 

used by considering linear approximation. On the 

other hand, the convective term at the faces of the 

control volume is evaluated by using an upwind 

scheme. The main idea of this scheme is that 

convective values at the face are calculated by using 

the values of upstream control volume or relative to 

the direction of the normal velocity (u). Fluent has a 

range of upwind schemes such as first order upwind, 

second order upwind, power law and QUICK 

(Quadratic Upstream Interpolation for Convective 

Kinetics scheme) [7]. All the above discretization 

schemes are mainly categorized by the order of 

solution accuracy. Apart from this, results produced 

from these schemes are physically realistic when it 

fulfills the following properties [4]: conservativeness, 

boundedness and transportiveness. 

For unsteady calculations, the transport equation 

must be discretized in both space and time. Temporal 

discretization involves the integration of all terms of 

transport equation over a time step t. The two main 

schemes available for temporal discretization in 

ANSYS/FLUENT are implicit time integration and 

explicit time integration [11]. 

 

3.3 Finite element discretization 

The FEM divides the continuum region of 

interest into a number of simply shaped regions 

called elements. In this discretization method, the 

variables within each element are interpolated using a 

local polynomial N
j
(x

i
) (shape or interpolation 

function) in terms of the values j at a set of nodal 

point j in a way that guarantees continuity of the 

solution across element sides [22,23]: 

1

n

j j
j

N 


  (12) 

where N
j
 is a polynomial shape function at nodes j 

and n is the number of nodes on the element. 
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The discretization process, therefore, consists of 

deriving the element matrices to put together the 

matrix equation [5]: 

    transient advection diffusion

e e e e eA A A S            
 (13) 

Galerkin’s method of weighted residuals is used 

to form the element integrals [5].  

Each degree of freedom is solved in sequential 

fashion. The equations are coupled, so that each 

equation is solved with intermediate values of the 

other degrees of freedom. The process of solving all 

the equations in turn and then updating the properties 

is called a global iteration. Before showing the entire 

global iteration structure, it is necessary to see how 

each equation is formed [5]. 

 

IV. Fluid-structure treatment 
4.1 Partitioned Analysis 

In general, one can choose to describe the whole 

coupled system in a monolithic way and solve all 

fields together or separate the fields and couple them 

in the sense of a partitioned analysis. In the latter case 

either sequential (staggered) or iterative algorithms 

can be used. The monolithic approach is 

straightforward and allows to solve the resulting 

system of equations with a complete tangent stiffness 

matrix (if - in an ALE setting - fluid, structure and 

mesh degrees of freedom are included). However, 

such monolithic approaches have a number of 

obvious severe drawbacks like loss of software 

modularity, limitations with respect to the application 

of different sophisticated solvers in the different 

fields and challenges with respect to the problem size 

and conditioning of the overall system matrix. Hence 

they are generally considered not very well suited for 

application to real world problems, where often not 

only specific solution approaches but also specific 

codes should be used in the single fields, and for this 

and a number of additional reasons we prefer to use a 

partitioned approach [17]. 

For the fluid-structure coupling an implicit 

partitioned approach is employed [12]. After the 

initializations the flow field is determined in the 

actual flow geometry. From this the friction and 

pressure forces on the interacting walls are computed, 

which are passed to the structural solver as boundary 

conditions. The structural solver computes the 

deformations, with which then the fluid mesh is 

modified, before the flow solver is started again.  

 

4.2 One-way coupling 

The coupling is one-way if the motion of a fluid 

flow influences a solid structure but the reaction of a 

solid upon a fluid is negligible [11]. The other way 

around is also possible. 

Initially, the fluid flow calculation is performed 

until convergence is reached. Then the resulting 

forces at the interface from fluid calculation are 

interpolated to the structural mesh. Next, the 

structural dynamic calculations are performed until 

the convergence criterion is met. This is repeated 

until the end time is reached. 

 

4.3 Two-way coupling 

This type of coupling is applied to the problem 

where the motion of a fluid influences a solid 

structure and at the same time the flow of fluid is 

influenced by reaction of a solid structure.During the 

first time step, converged solutions of the fluid 

calculation provide the forces acting on the solid 

body. Then the forces are interpolated to the 

structural mesh like in one-way coupling and the 

solution from the structural solver is obtained with 

those fluid forces as boundary conditions. As a 

consequence the mesh is deformed according to the 

response of structure. These displacement values are 

interpolated to the fluid mesh which results in 

deformation of the fluid domain. This process is 

repeated until both force and displacement values are 

converged below the pre-determined limit [11].
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Figure 1: Solution algorithm for one-way and two-way coupling 

 

V. Numerical simulations 
5.1 Fluid-interaction modelling 

In ANSYS Workbench, the FSI (two-way 

coupling) analysis can be performed by connecting 

the coupling participants to a component system 

called System Coupling. A participant system is a 

system which either feeds or receives data in a 

coupled analysis. Here, Fluent (participant 1) and 

ANSYS Mechanical (participant 2) are acting as 

coupling participants [7]. Initially, system coupling 

collects information from the participants to 

synchronize the whole set up of simulation and then 

the information to be exchanged are given to the 

respective participant. The next step of the work 

process is organizing the sequence of exchange of 

information. The solution part of the chart varies for 

different ways of coupling. Finally, the convergence 

of coupling step is evaluated at end of the every 

coupling iteration. 

 

 

 

Figure 2: System coupling 

 

As it launches the first time step, Fluent iterates 

and transfers the pre-requested information (fluid 

forces) to ANSYS Mechanical, so that this solver 

begins the iteration process to get nodal 

displacements. Now, the coupling service (System 

Coupling) collects the convergence status from both 

the participants and launches next time step. The 

calculated solution of ANSYS Mechanical is given 

back to the Fluent to determine a new set of fluid 

forces according to nodal displacements of previous 

step. This is said to be a coupling iteration and 

continues until the convergence criterion of data 

transfer is reached. 

For the one-way coupling the result (forces or 

temperature or convection load) from a CFD analysis 

at the fluid-structure interface is applied as a load to 

the Mechanical application analysis. The boundary 

displacement from the Mechanical application is not 

passed back to the CFD analysis, that is, the result 

from the Mechanical application is not considered to 

have significant impact on the fluid analysis. In this 

case the called system coupling is not needed and the 

loads can be linked directly between the two systems. 

Initially, geometric models of both fluid and 

solid domains are created with appropriate 

dimensions. ANSYS © is used as a preprocessor for 

creating the geometries models. The surface and 

volume mesh of fluent fluid domain are formed using 

GAMBIT and the finite element mesh is created by 

ANSYS Meshing. The two computational meshes 

differ with parameters such as cell type, cell size and 

mesh resolution. The completed meshes are imported 

to the respective numerical solvers where the 

simulation setup of a model is implemented. The 

simulation setup includes essential steps such as 

assigning the material properties, boundary 

conditions and numerical schemes for the two 

different models. In this paper, we propose a pre-

stressed modal analysis of a wing of 3D model. The 

wing has uniform configuration along its length, and 

ANSYS Fluent System Coupling ANSYS Mechanical 

Forces Displacement
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Solution of structure 

Interpolate forces on 
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Interpolate displacement 

on fluid boundary 

Deforming fluid mesh 

Solution of fluid 

Time step complete 

No 
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and forces 
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Next time step 
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its cross-sectional area is defined to be a straight line 

and a spline. It is held fixed to the body on one end 

and hangs freely at the other. The objective of the 

problem is the determination of the natural 

frequencies of the wing with the fluid flow in order to 

illustrate the effect of the fluid-structure interaction.  

 
Figure 3: Boundary conditions of the structure model 

 

 
Figure 4: Boundary conditions of the fluid model 

 

In the case of the CFD mesh, the surface mesh is first created using triangular elements, which is then used 

to create a volume mesh. The volume mesh is made up of tetrahedral cells, belonging to the category of 

unstructured mesh. The reason for not using hexahedral cells is that it is not compatible with the use of dynamic 

mesh in the current version of ANSYS/FLUENT. The mesh of the entire computational fluid domain is shown 

below in Figure 5. 
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Figure 5: Computational mesh of the fluid domain (ANSYS/FLUENT) 

 

The computational mesh of the structural member is created with the help of ANSYS Meshing tool. 

Figure 6 shows the mesh of structural member. 

 
Figure 6: Structural mesh 

 

For the finite elements calculation: SOLID186 is used for the 3-D modelling of solid, the element is defined 

by 20 nodes having three degrees of freedom per node: translations in the nodal x, y, and z directions. For the 

FLOTRAN CFD elements, FLUID142 is used for modelling the fluid flow and the interface in fluid-structure 

interaction problems as shown on Figure 7. 
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Figure 7: Computational mesh of the fluid domain (ANSYS/FLOTRAN) 

 

5.2 Numerical results 

The numerical study considered in this section an example which consists of a wing 3D coupled with 

airflow. This application aims to illustrate the methodology proposed in a deterministic analysis. Geometrical 

and material properties of the coupled system are:  

• For the structure: density = 2770Kg/m
3
, Young’s modulus = 7.1e10Pa, Poisson’s ratio = 0.3, Length = 10m 

• For the fluid: density = 1.225Kg/m
3
, viscosity = 1.6e-5Kg/(m.s), Length = 10m 

Total displacements of the wing after airflow with velocity inlet VX = 200 m/s found by ANSYS/FLUENT are: 

 

ANSYS/FLUENT Total displacement (m) 

One-way 0.759767 

Two-way 0.77566 

Table 1: Total displacement 

 

 
(a) (b) 

Figure 8: Total displacement of the wing (two-way (a) and one-way (b)) 
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Figure 9: Fluid pressure 

 

 
Figure 10: Fluid velocity 

 

Total displacement of the wing after airflow with velocity inlet VX = 200 m/s found by ANSYS/FLOTRAN is: 

ANSYS/FLOTRAN Total displacement (m) 

Load transfer 0.662633 

Table 2: Total displacement 

 

 
Figure 11: Total displacement of the wing 
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Figure 12: Fluid pressure 

 

5.3 PrestressedModal analysis 

The eigenvalue and eigenvector problem needs 

to be solved for mode-frequency analyses. It has the 

form of: 

[ ]{ } [ ]{ }i i iK M                     (14) 

where [K] is structure stiffness matrix, { }i  is 

eigenvector i  is eigenvalue and [M] is the structure 

mass matrix. 

For prestressed modal analyses, the [K] matrix 

includes the stress stiffness matrix [S]. The results of 

modal analyses with two different cases 

(ANSYS/FLOTRAN, ANSYS/FLUENT(one-way 

and two way)) are shown in Table 3. The result 

includes the first six mode shapes with its respective 

natural frequency values. 

 

 

Modes 

 

without 

airflow 

with airflow 

ANSYS/FL

OTRAN 

ANSYS/FLUENT 

One-way Two-way 

F
1

 1.4830 12.630 14.640 14.853  

F
2

 7.3146 19.182 22.016 22.290  

F
3

 9.2564 51.426 61.008 62.014  

F
4

 25.738 72.938 82.772 83.766  

F
5

 29.314 89.873 105.69 107.36  

F
6

 44.242 126.02 126.34 126.36  

Table 3:Natural frequencies of the aircraft’s wing 

 

VI. Conclusion 
Problems concerning the interaction between 

fluid and structure were solved on a three-

dimensional wing of aircraft in airflow. The fluid was 

modeled using both two different approximation 

methods used as computational fluid dynamics 

(CFD) solvers based on the finite volume methodand 

finite element method, the structure was modeled 

using finite element equations and the two 

approaches were coupled in order to understand the 

dynamics of the structure, a comparison of the 

solution between the two methods, one-way and two-

way coupling simulation is shown and then a pre-

stressed modal analysis has been conducted to 

determine the natural frequencies and its respective 

mode shapes. 

Our numerical results show little difference between 

the one-way and the two-way treatment and the 

FV/FE gives better results than the FE/FE 

approximations.  
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